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Flow of red blood cells along narrow cylindrical vessels, with inside diameters up to 
8 pm, is modelled theoretically. Axisymmetric cell shapes are assumed, and lubrication 
theory is used to describe the flow of the suspending fluid in the gaps between the 
cells and the vessel wall. The models take into account the elastic properties of the 
red blood cell membrane, including its responses to shear and bending. At moderate 
or high cell velocities, about 1 mm/s or more, the membrane stress may be 
approximated by an isotropic tension which is maximal at  the nose of the cell and 
falls to zero at  the rear. Cell shape and apparent viscosity are then independent of 
flow rate. A t  lower flow velocities, membrane shear and bending stresses become 
increasingly important, and models are developed to take these into account. 
Apparent viscosity is shown to increase with decreasing flow rate, in agreement with 
previous experimental and theoretical studies. 

1. Introduction 
Blood flow in microvessels (with diameters of about 100 pm or less) presents 

intricate problems in fluid and solid mechanics, and present theoretical understanding 
is limited, despite the physiological importance of the phenomena involved. For 
example, the apparent viscosity of blood in narrow tubes is substantially lower than 
the bulk viscosity (the Fahraeus-Lindqvist effect). Also, the haematocrit (volume 
fraction of red blood cells) is reduced in microvessels compared to systemic values. 
This is the result of several factors including the difference between mean-red-cell and 
bulk-flow velocities (the Fahraeus effect). Early theoretical work in this area was 
reviewed by Whitmore (1968) and Gross & Aroesty (1972), and the literature has 
continued to expand. A number of studies (e.g. Thomas 1962 ; Gupta, Nigam & Jaffrin 
1982) have modelled blood rheology in microvessels with a wide range of diameters 
by extending continuum models to include the effects of cell-free or cell-depleted 
regions near the vessel walls. These studies usually involve one or more parameters 
which must be obtained empirically by fitting to experimental data. A more 
fundamental approach is to predict rheological properties starting from known 
mechanical properties of individual blood cells. This approach is particularly suitable 
for modelling flow in capillaries with diameters less than about 8 pm, in which red 
blood cells frequently travel in single file, each cell almost filling the lumen. 
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The basic mechanical properties of the human red blood cell have been much 
studied in recent years, and they are now fairly well established. In  fact, the human 
red cell provides an unusual instance in which mechanical properties of a biological 
system are known in detail at the cellular level. Problems of blood flow in microvessels 
are therefore particularly well suited to a theoretical approach. In this study we 
develop theories for blood flow in narrow capillaries which exploit this information 
about the red cell. 

Starting with the work of Barnard, Lopez & Hellums (1968) and Lighthill (1968), 
most theoretical studies of blood flow in narrow capillaries have rested on two key 
approximations. Firstly, the fact that individual cells almost fill the lumen has 
suggested the use of lubrication theory to describe the fluid flow in the narrow gaps 
between the cells and vessel walls. Earlier, Bretherton (1961) used this theory in 
studying the motion of bubbles in tubes. In lubrication theory, the equations of fluid 
motion are simplified by the neglect of inertia and by the assumption that the 
thickness of the gap between the two surfaces is small compared with the other 
dimensions involved. Secondly, microscopic observations have shown that red blood 
cells in narrow capillaries may have approximately axisymmetric shapes, and the 
deformed cell geometry has been assumed to be axisymmetric. We use both these 
approximations in this study. 

Some studies have been based on different assumptions. Zarda, Chien & Skalak 
(1977~)  also assumed axisymmetric geometry in analysing capillary flows at  low 
velocities, but used a finite-element method which did not require the narrow-gap 
approximation of lubrication theory. The effects of asymmetry in cell shapes were 
investigated by Secomb & Skalak (1982) using a two-dimensional lubrication-theory 
model. 

In  $2 we discuss the mechanical properties of red blood cells, and in $3 we formulate 
the problem. Sections 4 and 5 are devoted to solutions in which successively more 
details of the red cell’s mechanical response are incorporated. 

2. Mechanical properties of the red blood cell 
The original models of Lighthill and Barnard et al. differed in their assumptions 

about the mechanical properties of individual red blood cells, but neither was very 
satisfactory in this regard. Lighthill (1968) assumed that the undeformed cell shape 
near the wall is parabolic, and the deformation of the cell is proportional to the local 
pressure. This approximation may be applicable for solid elastic or viscoelastic cells 
(such as white blood cells), but is not well suited to describing the mechanics of a 
fluid-filled sac (the red cell). Subsequent developments of this model (Fitz-Gerald 
1969; Lomen & Gross 1977; Vann & Fitz-Gerald 1982) used the same approximation 
to the mechanical properties of the cell. The case of solid elastic spheres was treated 
by Tozeren & Skalak (1979). 

In  the model developed by Barnard et al. (1968) the cell is represented as a flexible 
circular sheet which is deformed in flow into a hollow ‘thimble’ shape with isotropic 
tension acting in the cell membrane, maximal tension occurring at the ‘nose’ of the 
cell. The stress in the sheet is approximated by an isotropic in-plane tension. Observed 
cell shapes are in fact much less concave at the rear than this model suggests, and 
in a subsequent study (Lin, Lopez & Hellums 1973) essentially the same analysis was 
used but the cell was represented as a solid bullet-like shape with isotropic tension 
acting in the cell membrane. 

The basic mechanical properties of red blood cells are fairly well established (Skalak 
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1976). A thin membrane surrounds the cytoplasm, whkh is considered to be an 
incompressible Newtonian fluid. The membrane exhibits viscoelastic properties, but 
under steady conditions only the elastic deformation needs to be considered. The 
elastic shear modulus of the membrane (4.2 x dyn/cm; Chien et al. 1978) is 
several orders of magnitude lower than the modulus of isotropic dilatation (about 
500 dyn/cm) and so the membrane shears readily but resists area changes. Also, 
bending resistance is small unless very small radii of curvature are involved; the 
bending modulus is estimated to be 1.8 x 10V2 dyn cm (Evans 1983). 

An axisymmetric red blood cell subjected to steady external forces assumes a 
configuration in which the external forces are balanced by stresses induced within 
the membrane and cytoplasm. The character of the membrane stresses depends on 
the magnitude of the applied forces. Relatively small external forces will generally 
be balanced by a combination of tension, shear and bending stresses in the membrane. 
When the fluid stress on the cell is increased, large strains are required to generate 
corresponding increases in shear stress, and sharp curvatures are required to generate 
correspondingly large bending stresses. In  an axisymmetric flow configuration, the 
magnitude of shear strains possible in an intact cell without membrane dilatation is 
limited. On the other hand, large isotropic tensions may be generated by small 
membrane dilatation. This suggests that such a highly stressed cell tends to assume 
a configuration in which external fluid forces are balanced primarily by isotropic 
membrane tension, except possibly at localized regions of high curvature. The 
dominant membrane stress over most of the cell surface will then be isotropic tension, 
if the cell velocity is sufficiently large. Lin et al. (1973) developed a self-consistent 
model in which isotropic membrane tension is assumed and bending stresses are 
neglected, which has been further elaborated by Secomb & Gross (1983) and here 
in $4. 

Membrane shear and bending forces become increasingly important a t  lower cell 
velocities, and the membrane tension is no longer approximately isotropic. In 
analysing the effects of shear end bending elasticity, we use constitutive relations 
proposed by Evans & Skalak (1980, pp. 77, log), as they apply to an axisymmetric 
membrane shell. Arclength s, measured from the nose of the cell, describes the 
position on the membrane. Other variables, indicated in figure 1, are r (s) ,  distance 
from the axis; 8(s), angle between the normal to the membrane and the axis; k,(s) 
and k+(s), membrane curvatures; m,(s) and m+(s), bending moments; ts (s )  and t+(s), 
membrane tension; and p,(s), shear force per unit length. The subscript s denotes 
components in a plane containing the axis, while q5 denotes azimuthal components. 
Because of the high modulus of dilatation, we treat the membrane as incompressible 
in a two-dimensional sense (i.e. the deformation is locally area preserving). In this 
case the mean tension tm(s) is analogous to the hydrostatic pressure in incompressible 
fluid flow. Then the components of tension are 

t ,=t,+t,  and t+=t,-t,, (2.1) 

where t d - - 1 2K( h2--h-2), (2.2) 

K is the shear modulus of the membrane and h = ds/ds, = ro / r  is the extension ratio 
of a membrane element in the s direction relative to the unstressed shape. The 
subscript 0 denotes the unstressed state. The bending moment is assumed to be 
isotropic and proportional to the increase in total curvature of the surface (Evans 
& Skalak 1980): 

", = mg = B [ ( k , + k g ) -  (k,+kg),l, (2-3) 
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FIQURE 1.  (a)  Variables describing the geometry of an axisymmetric shell. ( b )  Stress 
resultants in an element of an axisymmetric shell. 

where the principal radii of curvature are given by 

d6 sin 6 
k, =- and k - , ds 4 - 7  

and B is the bending modulus. A more general model for the bending response is given 
by Skalak (1976) and Zarda et al. (1977a), including (2.3) as one possibility. 

For axisymmetric shells, the equations of mechanical equilibrium are given by 
Timoshenko (1940). The hydrodynamic loading on the cell in this instance consists 
of the hydrostatic pressure difference p(s )  between the external and internal fluids 
and the viscous shear stress 7 ( s )  due to the external fluid. (The viscous normal stress 
vanishes because the fluid velocity in a frame moving with the cell is zero at  the cell 
surface and the flow is incompressible.) The equations for equilibrium of normal stress, 
tangential stress and bending moments in the membrane are respectively: 

In this formulation, we have assumed that the red cell has an unstressed shape 
which is axisymmetric and that the same axis pertains to the cell in the final shape. 
The question of the existence and nature of an unstressed shape for the red-cell 
membrane is not settled (Fischer et al. 1981a, b ) .  Zarda et al. (1977~)  assumed that 
the cell was unstressed with respect to both shear and bending in a biconcave disk 
shape, coaxial with the vessel. Here we assume that the cell is unstressed in a spherical 
shape with the same surface area as the cell. The consequences of these assumptions 
are discussed in 56. The density of red cells differs only slightly from that of plasma, 
and buoyancy effects are neglected here. 
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3. Formulation using lubrication theory 
3.1. Governing equations 

In  applying lubrication theory, we assume that the typical width of the gap between 
the cell and the vessel wall is small compared to the lengthscale of the gap. Generally, 
this implies that the gap is small compared to the vessel radius, and suggests the 
possibility of using two-dimensional lubrication theory to describe the flow in the 
neighbourhood of the wall. However, it is not necessary to make this approximation, 
and we shall show that using the axisymmetric form of lubrication theory yields 
significantly more accurate results in certain cases. At this stage, therefore, we make 
no explicit assumption regarding the smallness of the gap relative to the vessel radius. 

Typical cell shapes are rounded at the leading end. In this region the gap is not 
uniformly narrow, and lubrication theory no longer strictly applies. The pressure 
gradient is, however, small in this region compared to its values in the narrow gap 
(see $4.2), and so the error in the calculated overall pressure drop resulting from 
applying lubrication theory uniformly along the whole length of the cell is small. 

In the cylindrical coordinates (a, 4, z )  moving with the cell, the flow is steady and 
the pressure p ( z )  in the gap depends only on z, the axial position (figure 1 b). The axial 
velocitv u(a. z )  satisfies : 

with boundary conditions u = 0 on the cell surface a = r (z) ,  and u = uo at the vessel 
wall a = a, where uo is the cell velocity and a is the vessel radius. The volume flow 
of fluid relative to the cell is known as the 'leakback ' and is independent of z. The 
leakback qo per unit circumference is given by 

Equations (3.1) and (3.2) may be solved for the pressure gradient in terms of r ( z )  and 
qo (Tozeren & Skalak 1978): 

The shear stress acting on the cell surface is then given by 

The complete system of differential equations is obtained by combining the 
equations governing the elastic response and mechanical equilibrium of the membrane 
(2.1)-(2.7) with the equations of lubrication theory (3.1)-(3.4). It is convenient to use 
arclength s as the independent variable: 

dr _ -  - case, 
ds 

d0 
ds 
-= k,, 

(3.5) 

(3.7) 
dk, - sin 0 cos 0 cos 0 k, q +", 
ds r2 r B  

-___ -- 
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dP 
- = g ( r )  sin 8, ds (3.9) 

(3.10) 

It may be shown using (3.5), (3.6), (3.8) and (3.10) that the net axial force on the 
particle vanishes : 

Jos’ 27tr(p cos 8 + 7 sin 0) ds = 0, (3.11) 

where s1 is the total arclength, as long as rq,+O as r+O. This is the so-called ‘zero 
drag’ condition. The other boundary conditions are that r and 8 vanish on the axis, 
and that the surface area and volume are prescribed. 

Note that the shape of a freely suspended red blood cell may be calculated by 
setting7 = 0 andp = constant in the system (3.5)-(3.10). This provides an alternative 
approach to the finite-element method of Zarda et al. (1977 b) .  

3.2.  Calculation of apparent viscosity and Fahraeus effect 

The analyses in §§4 and 5 will provide estimates of the pressure drop Ap across the 
red cell and the leakback qo. From these we may calculate two key rheological 
parameters: the reduction of haematocrit due to the Fahraeus effect, and the 
apparent viscosity. Because the red-cell velocity uo is higher than the mean bulk 
velocity U, the haematocrit HT within the microvessel is lower than the discharge 
haematocrit HD which would result if the blood emerging from the microvessel were 
collected, and they are related by (Sutera et al. 1970): 

- 
HT- 

H D  uO‘ 

The reduction in haematocrit is therefore given by 

(3.12) 

(3.13) 

In the lubrication models, effects of interactions between cells are assumed 
negligible. The apparent viscosity paPp therefore depends linearly on the haematocrit, 
and is expressed in terms of a parameter KT, the apparent intrinsic viscosity, where 

Papp = P ( ~ + K T H T ) *  (3.14) 

If it is assumed that the pressure drop in the regions between cells is given by the 
Poiseuille formula, then 

(3.15) 

where E is the length of the cell. These assumptions are justified on the basis of studies 
of the ‘bolus’ flow in the region between cells. Lew & Fung (1969) and Papenfuss 
& Gross (1982) calculate the pressure drop in the region between two cylindrical 
particles moving along a vessel. Both studies demonstrate a pressure drop additional 
to the Poiseuille estimate in the fluid adjacent to each particle, which is independent 
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Po = aPoIP0 

Axisymmetric Two-dimensional 
Wang & Skalak (1969) lubrication theory lubrication theory 

A’ (series expansion) (numerical) (closed-form) 

0.600 
0.700 
0.800 
0.900 
0.950 
0.980 
0.990 
0.995 
0.998 

6.9836 6.8778 
9.8601 9.7153 

15.7262 14.8492 
28.4832 27.8270 
- 48.1138 
- 91.2154 
- 141.5370 
- 2 13.8301 
- 358.6905 

9.8266 
12.3927 
17.2289 
29.7785 
49.6663 
92.2876 

142.3033 
2 14.3655 
358.9627 

TABLE 1. Comparison of estimates of the dimensionless driving pressure Po for rigid spherical 
particles. A’ is the ratio of particle diameter to tube diameter. 

of the particle spacing if the spacing is more than one vessel diameter. The extra 
pressure drop is conveniently expressed as an equivalent length 1, via Poiseuille’s law. 
The calculations of Papenfuss & Gross (1982), in which the particle radius equals the 
vessel radius a,  give 1, N 0.75~. Lew & Fung (1969) assume a particle radius of 0.9a 
and their results imply 1, N 0 . 5 ~ .  In the latter study, there was a leakback q,, = 0.05, 
suggesting that 1, decreases with increasing leakback. The blunt-ended particle filling 
the vessel is an extreme caae and gives an upper limit to this effect. The additional 
pressure drop near a hemispherical-ended particle is probably considerably less. These 
arguments indicate that the additional pressure drop in the fluid beyond the ends 
of the cell can be neglected in our calculations. 

3.3. Rigid particles and spheres 
Depending on the assumptions made, a number of different approaches are available 
to solve the system of equations given in $3.1. If rigid axisymmetric particles with 
given geometries are considered, (3.3) and (3.4) and the zero-drag condition (3.11) 
are sufficient to solve the problem. 

The application of the zero-drag condition requires some caution. This condition 
is used to determine the leakback qo, which is an unknown parameter in (3.3). 
According to the narrow-gap assumption, sin 8 N 1 and cos 8 N 0 in the lubrication 
region. But, if these approximations are made in (3.11), the resulting simplified 
zero-drag expression may yield very inaccurate results for qo, and hence the pressure 
drop (Lighthill 1968; Tozeren & Skalak 1978). Because large pressures may occur in 
the gap, the term p cos 8 is not negligible. Similarly, retention of the term sin 8 in 
(3.9) yields improved accuracy, even though its neglect would be consistent with the 
lubrication approximation. This point may be illustrated by considering spherical 
particles. Wang & Skalak (1969) studied the viscous flow of a line of rigid spheres 
in a cylindrical tube, giving series expansions for the exact solutions. The results of 
Wang & Skalak are expressed in table 1 in terms of dimensionless pressure drop per 
particle. The estimates for pressure drop from axisymmetric lubrication theory, 
taking the sin8 term into account, agree closely with the results of Wang & Skalak 
(1969), even for values of A’, the ratio of particle diameter to tube diameter, as low 
as 0.6. 

14 FLM 163 
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Table 1 also indicates that the two-dimensional approximation to lubrication 
theory, obtained by replacing the first term of (3.1) by ,uL2u/acr2, yields quite 
accurate results for spheres with diameter ratios of 0.9 or more. In  this approximation, 
closed-form solutions are available for spheres and for certain other axisymmetric 
shapes such as cylindrical particles with flat or hemispherical ends. Details are given 
by Ozkaya (1985). For values of A’ between 0.6 and 0.8, axisymmetric lubrication 
theory is seen to yield significantly more accurate results than the two-dimensional 
form, and was therefore used in most of the calculations reported here. 

These results suggest that carefully formulated axisymmetric lubrication theory 
can yield useful results even for diameter ratios substantially less than one. In the 
case of more elongated particle shapes, lubrication theory should yield results at least 
as accurate as those obtained for spherical particles with the same diameter ratio, 
since the ratio of gap width to gap length is then smaller for more elongated particles. 

4. Isotropic membrane tension: the high-velocity limit 

4.1. Formulation in the high-velocity limit 
In this section it is shown that the governing equations admit solutions in which the 
fluid-mechanical stresses acting on the cell are balanced solely by isotropic tension 
within the cell membrane, and in which membrane shear and bending resistance are 
neglected. As mentioned earlier, this corresponds to a limiting solution at high cell 
velocities. The conditions under which this solution can be considered a valid 
approximation will be discussed later. 

If bending resistance is neglected, (3.5)-(3.10) take a simplified form. The membrane 
cannot support an out-of-plane shear force (q, = 0 ) ,  and so (3.7) is redundant and 
(3.8) reduces to an algebraic equation for k,. The resulting equations are : 

dr 
- = cose, 
ds 

9 = g(r) sine, 
ds (4.3) 

(4.4) 

The further simplification of neglecting membrane shear elasticity is achieved by 
setting K = 0. This system becomes singular when t, = 0, allowing the possibility of 
a cusp with infinite curvature. Such a cusp is expected at the trailing edge of the cell. 
In our calculations we have not integrated through the cusp numerically; instead the 
rear concavity is approximated with a spherical segment. 

4.2. Asymptotic solution for s m l l  gaps 
The governing equations can be further simplified if the additional assumption is 
made that the gap is narrow compared with the vessel radius over most of its length. 
In  this case the leakback is correspondingly small compared with the total flow, and 

2p.o 
we introduce a parameter 

& = - <  1) 
auo 

(4.5) 
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and a scaled gap width h where 
r = a(1-sh). 

Then the pressure gradient and shear stress are approximately as given by two- 
dimensional lubrication theory (cf. Lighthill 1968) : 

and 

g = ~ , u u ~ ( u E ~ ) - ~  ( 1  -h-' + O(€h)) ,  

7 = ,uu,(aeh)-' (3h-'-2+O(sh)). 

In this limit, two special solutions to (4.1)-(4.4) may be deduced. One solution 
(region I1 in figure 2a) corresponds to a cylinder nearly filling the vessel cross-section : 

e = i x  2 7  r =  rc ,  p = g(rc) ( ~ - 8 ~ )  and t ,  = -rep, (4.9) 

where 7(rc)  = rcg(rc) ,  and the membrane tension vanishes when s = sd. Equations 
(4.7) and (4.8) show that 

h = 1+O(s)  when r = r c .  (4.10) 

The pressure (p) and membrane tension (t,) are therefore large at the upstream end 
of this region, both being of order e-l. If we now suppose that pressure and tension 
of this order are transmitted into a second region in which h 9 1 ,  and where, as (4.7) 
and (4.8) show, the pressure gradient and shear stress are much smaller, then p and 
t, may be approximated by constants in this second region. The resulting solution 
is : 

(4.1 1)  8 = - ,  r = r,sin8, p = - p ,  and t , =  t,,, 

where 0 4 s < !jm, and r, = 2tso/po, corresponding to a hemisphere with its pole on 
the axis. 

An overall asymptotic solution for small gaps is obtained by matching the 
hemisphere (region I) to the cylinder (region 11) through a relatively short transition 
region (region 111) as shown in figure 2(a ) .  In region I11 the governing equations 
(4.1)-(4.4) reduce to: 

S 

TO 

dh 8' 
ds a€' 

d8' p 1 
- = -+-, 
ds t ,  a 

_ -  - -- (4.12) 

(4.13) 

(4.14) 

(4.15) 

where 8' = !jx -8 < 1 .  The tension is almost constant in regions I and I11 so we 
replace t,  by t,, in (4.13). We introduce an inner coordinate 

(4.16) 

where h(s,) = Q ,  and let h =f(y). Then (4.12)-(4.14) give 

f" = 6(f3-f2). (4.17) 

and f(0) = Q ,  uniquely determine f(y), and The boundary conditions, 9 -+O as y-. 
14-2 
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FIQURE 2. Asymptotic model for small gaps. (a)  Sketch showing regions I-IV of the asymptotic 
solution. (b )  The function f(y) and its derivatives. 

mmerical solution (see figure 2b) shows that f" approaches k, N 2.123 as [+-a. 

P = -4o/a [ I +  ( t , o / l u ~ O ) - ~ f " ( ~ ) / ~ l ~  (4.18) Also, 

and sincep+-p, as [+- a to match with region I andp, = 2t,,/a to leading order, 
it follows that 

t,, = p u , ( e / k , ) - ~  and p, = 2pu,/a (elk,)-:. (4.19) 

The asymptotic cell shape is completed by considering the tail region, region IV.  
The membrane tension falls to zero at s = sd, and the curvature may be infinite, giving 
a cusp. Beyond this point fluid-mechanical stresses are negligible, so the tension is 
zero throughout the tail region. The upstream hydrostatic pressure is transmitted 
into the interior of the cell, and so p, = Ap, where Ap is the pressure drop driving the 
cell. The shape of the membrane is therefore arbitrary in region IV, subject only to 
the surface area and volume constraints, and does not affect the solution in the other 
regions. 

An estimate of e can be obtained if the length of the cylindrical region I1 is known, 
say ya where y 9 1.  Then (4.15) shows that t,, N pu, y / e  and so 

e = k i y - 2 .  (4.20) 
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The lengthscales of regions I, I1 and I11 are therefore a, a d  and ad respectively, 
when the gap width is of order a€. Actual values of y are restricted by the fixed surface 
area of the cell. In  fact y < 10 for normal red blood cells and (4.20) shows that 8 is 
not generally small. This asymptotic theory is therefore unsuitable for quantitative 
predictions. However, it allows us to draw several conclusions about the dynamics 
of axisymmetric red-cell motion a t  high velocities in narrow capillaries. (i) The cell 
is bullet-shaped with a hemispherical nose. (ii) The pressure in the lubrication layer 
varies monotonically, in sharp contrast to its behaviour in the case of spherical 
particles. There is a sharp rise in pressure in the transition region near the nose, and 
a gradual rise along the remainder of the cell’s length. (iii) The gap width along most 
of the length of the cell is constant and is determined by the fluid mechanics of the 
transition region and the length of the cell. (iv) The apparent viscosity is independent 
of cell velocity when the velocity is high, since Ap is proportional to u,,. 

4.3. Numerical solution 
The equations (4.1)-(4.4) with K = 0 are first rewritten in dimensionless form and then 
integrated numerically. The results confirm the above qualitative conclusions, and 
allow quantitative predictions of particle geometry and flow parameters. Such 
calculations were made by Secomb BE Gross (1983), extending those of Lin et al. (1973). 
The theory was shown to be appropriate at cell velocities above about 1 mm/s. 
Further results are presented here for several distinct classes of flexible particles 
(Ozkaya 1985). 

( i )  Long cylindrical particles. This is the class of shapes to which the asymptotic 
solution in $4.2 applies. The indeterminate shape of the concave tail region is here 
modelled by a segment of a sphere, and the constraints of constant surface area and 
volume for a given cell are satisfied by adjusting the input parameters of the 
numerical integration (pressure drop, initial curvature and leakback). A sample set 
of results is shown in figure 3 (a).  Using this model, Secomb & Gross (1983) predicted 
values of apparent viscosity and tube haematocrit (Fahraeus effect) in good agreement 
with experimental results (Albrecht et al. 1979; Gaehtgens 1980; Lingard 1979) for 
blood flow in capillaries with diameters from 3 pm to 6 pm. 

( i i )  Flared particles. If the requirement that the membrane tension approach zero 
at the trailing end of the cell is relaxed, (4.1)-(4.4) allow solutions in which the cell 
shape is flared at the rear. The spherical segment used to approximate the membrane 
in the rear is then under uniform compression, and the pressure in the interior of the 
cell is greater than the upstream pressure. At the cusp, the tension in the outer 
membrane is in equilibrium with the compression in the spherical segment, but an 
additional constraint is implied, to prevent the membrane from moving around the 
rear rim, out of the region under compression. Also, the neglect of shear and bending 
forces in this limit means that the rear face cannot support a compressive stress, so 
this is not a realistic limiting shape for red-blood-cell shapes. Even so, a similar flare 
is obtained when bending resistance is taken into account (see below). A wide pressure 
swing in the lubrication layer is associated with the 0aring of the trailing edge, as 
shown in figure 3 (b). 

( i i i )  Bubble-shaped particles. There is a lower limit (d,) to the diameter of vessels 
through which a red blood cell may pass intact. To pass through vessels smaller than 
d ,  requires an increase in the surface area of the cell, and haemolysis results if the 
increase is more than a few per cent. The critical diameter is calculated by assuming 
that the shape of the cell in a vessel of critical diameter is a cylinder with 
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FIGURE 3. Cell shape, gap pressure and membrane tension calculated using the isotropic tension 
model for: (a) a long cylindrical particle; ( 6 )  a flared particle; (e) a bubble-shaped particle. 

hemispherical ends (Canham & Burton 1968). If typical values for volume V = 90 pm3 
and area A = 135 pm2 are assumed, then d, N 2.8 pm. 

A model for vessel diameters near 3 pm was developed by Secomb & Gross ( 1983). 
The cell was assumed to be effectively rigid with the critical shape already mentioned, 
and a simplified approximation to lubrication theory was used. The isotropic tension 
model provides a more detailed approach to this case. Equations (4.1)-(4.4) have 
solutions for bubble-like cell shapes without a cusp which are convex at both ends. 
An example is shown in figure 3 ( c ) ,  in which the surface area is that of a normal 
red blood cell but the volume is elevated. 

5. Effects of membrane shear and bending resistance 
The foregoing analysis shows that, as red-cell velocity falls, isotropic membrane 

tension decreases proportionally. Red-cell deformation remains finite, however, and 
so the elastic stresses resulting from membrane shear and bending are comparable 
to the isotropic tension at low enough velocities. The isotropic-tension model is then 
no longer appropriate, and cell shape and rheological properties become dependent 
on flow rate. 

The effects of membrane shear elasticity, in the absence of bending rigidity, may 
be included by setting K > 0 in (4.1)-(4.4). The non-dimensional parameter K / , ~ u ~  

indicates the relative importance of shear elasticity. Resulting computed cell shapes 
are shown in figure 4. The tension t, at the trailing edge is zero, as is the pressure drop 
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FIGURE 4. Cell shapes calculated including membrane shear but neglecting bending. (a)  uO+O (the 
isotropic tension limit); ( b )  uo = 0.25 cm/s; (c) uo = 0.125 cm/s. Regions ofnegative circumferential 
membrane tension are indicated at the top. 

across the rear surface. Cusps are again present at  the trailing edge, but the cell shape 
depends on the flow rate, the cell broadening with decreasing velocity. A region of 
negative circumferential tension (t+ < 0) is found to occur near the rear of the cell, 
in which the axisymmetric configuration is potentially unstable. Although buckling 
is to some extent inhibited by bending resistance, these results show the possibility 
of an inwardly buckled cleft whose length increases as the flow rate decreases. This 
qualitative behaviour is also shown in observations of red cells in capillaries by 
Hochmuth et al. (1970) and Gaehtgens, Duhrssen & Albrecht (1980). 

Both shear and bending elasticity are included in the studies of Zarda et al. (1977a) 
and Skalak & Tozeren (1980), who used finite elements to calculate the fluid flow and 
the cell shape in vessels of diameter 7.4 pm or more. In narrower vessels, the fluid 
gap becomes small and a lbbrication theory approach is appropriate. To include shear 
and bending effects in a model based on lubrication theory, the boundary-value 
problem consisting of (3.5)-(3.10) and boundary conditions must be solved 
numerically. 

The procedure is as follows. A new independent variable x is introduced, representing 
the angular distance from the axis of a material element when the cell is inflated to 
a sphere of the same surface area. The computational domain is then fixed, namely 
(0 < x < n}. Equations (3.7)-(3.10) are singular on the axis, at x = 0 and x = n. The 
numerical solution is therefore obtained over a slightly reduced domain (6 < x < n - S} 
where S = &n, and matched to series solutions near the axis. For most parameter 
values of interest, the boundary-value problem is ill-conditioned, i.e. when integrated 
starting at  one boundary it is very sensitive to initial values. Because of this, 
a ‘multiple-shooting’ routine is used (IMSL Inc., Houston, Texas). The domain is 
divided into 32 subdomains, separated by ‘shooting points’, and an iterative 
procedure is used. At each iteration, estimates of the independent variables at each 
shooting point are used as initial conditions to integrate over each subdomain. The 
estimates are then refined so as to improve the matching between solutions on 
adjacent subdomains. Convergence is generally achieved within a few iterations. 
However, for the smaller vessel diameters examined, and at  very low or very high 
cell velocities, the solution is highly sensitive to the initial conditions even when 
integrated over small subdomains, and this limits the range of parameter values over 
which convergence could be achieved. 

Cell shapes computed by this method are shown in figure 5 ,  for a range of vessel 
diameters and cell velocities and other ’: parameters as follows : p = 1 cP; 
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FIGURE 5. Cell shapes calculated including both shear and bending elasticity. (a) Cell velocity 
0.01 cm/s, vessel diameters as shown. ( b )  Vessel diameter 6 pm, cell velocities as shown. ( c , d )  
Variation of normalized pressure in the gap corresponding to cell shapes in (a) and (a). 

K = 0.0042 dyn cm; and B = 1.8 x dyn cm. These computed shapes are con- 
sistent with those obtained using the simpler models and finite-element results of 
Skalak & Tozeren (1980) in that they show a rounded nose and a concave rear. 
Because bending resistance is included, the cusp at the trailing edge is replaced with 
a rim of finite curvature. The rim bulges outwards, and the minimum gap width is 
associated with this trailing edge, as observed experimentally by Bagge et al. (1980) 
and Gaehtgens et al. (1980). 

The variation of pressure in the lubrication layer, normalized relative to the overall 
pressure drop, is also shown in figure 5.  The outward bulge at the trailing edge 
produces a swing in pressure, as with the flared particles of $4.3. The amplitude of 
this swing decreases as cell velocity increases (figure 5 4 ,  suggesting the approach to 
the monotonic pressure profile shown in figure 3 (a). The numerical scheme failed to 
converge at higher cell velocities, so a close approach to the high-velocity limit could 
not be demonstrated. 

In a vessel of given diameter, the cells become broader as velocity decreases. Such 
changes in cell shape result in changes in apparent viscosity, which increases as flow 
rate decreases. Predictions of apparent intrinsic viscosity KT over a wide range of 
cell velocities are shown in figure 6. The approach to the high-velocity limit is shown 
by the computations including shear but not bending elasticity. A t  cell velocities 
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FIQURE 6. Variation of KT with cell velocity u,,: comparison of present study with other theoretical 
and experimental studies. Vessel diameter in pm is shown on each curve. Theoretical results: 0,  
lubrication model including shear elasticity but neglecting bending; 0, lubrication model including 
both shear and bending elasticity; A, finite-element results of Tozeren & Skalak (1980). 
Experimental results: - - - -, results of Lee & Fung (1969) using macroscopic model cells; .. -.. - . ., 
results of Lingard (1979) using human red blood cells; . -. -. -, results of Driessen et al. (1984) using 
rat red blood cells. 

around 1 mm/s there is a small but significant increase in apparent viscosity from 
the asymptotic value. For vessel diameters of 5 pm and 6 pm, calculations have been 
made using both models (with and without bending), and the results appear to be 
consistent. Apparent viscosity rises rapidly a t  low velocities and is substantially 
higher a t  cell velocities 0.01 cm/s and below. The broadening of the cell at low 
velocities also leads to a decrease in the Fahraeus effect ( H T / H D  nearer to unity) 
as shown in figure 7. 

6. Discussion 
The experimentally measured bulk viscosity of whole blood corresponds to a value 

of KT of a t  least 7.0. Our results thus confirm the marked reduction in the apparent 
viscosity of blood in capillaries (the Fahraeus-Lindqvist effect), over a wide range 
of flow rates. The dependence of KT on flow rate is physiologically important since 
there is a very wide range of flow rates in the capillaries of a resting tissue, with many 
at or near stasis. Results of several experimental studies demonstrating this effect 
are included in figure 6. Driessen et al. (1984) studied rat red blood cells flowing 
through 6.4 pm glass capillary tubes, while Lingard (1979) passed human red cell 
suspensions through arrays of capillaries of diameter 5.34 pm. Lee & Fung (1969) used 
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FIQURE 7. Variation of the Fahraeus effect, indicated by HT/HD, with cell velocity u,,: 0,  model 
including shear elasticity but neglecting bending; 0, model including both shear and bending 
elasticity. 

rubber model cells in their study. In  plotting their data, we have rescaled vessel 
diameters according to cell dimensions, and velocities via the dimensionless group 
,uuo/M, where M is the membrane elastic modulus for uniaxial in-plane stress. The 
lubrication-theory model shows satisfactory agreement with all these studies. Flexible 
model cells were also used by Sutera et al. (1970), under conditions corresponding to 
extremely low red-cell velocities. 

A t  low cell velocities, the assumption about the unstressed shape of the red-blood- 
cell membrane becomes increasingly significant. Use of an axisymmetric model 
requires that the unstressed shape is axisymmetric and coaxial with the vessel. In 
fact, observations of red cells in narrow capillaries generally show that the axis of 
the biconcave disc lies perpendicular to the vessel axis, leading to the so-called 
'crepe-suzette' shape in which the cell is folded over on itself. In  our calculations, 
it is assumed that the membrane is unstressed in an inflated spherical shape, so that 
there is no preferred orientation. A cell with this property has more than one possible 
shape when freely suspended with normal volume. The results for vessel diameter 
8 pm in figures 6 and 7 reflect an asymptotic approach at  low velocities to a freely 
suspended, cupped shape with diameter slightly more than 7 p. By contrast, Skalak 
& Tozeren (1980) assumed the unstressed cell shape to be a biconcave disc coaxial 
with the vessel. Their predicted values of intrinsic viscosity KT are relatively high 
compared to the other data, probably because of this assumption. Other unstressed 
shapes may be modelled using the present lubrication theory approach, by including 
an additional term in (3.7) to represent the initial curvature. 

In-vivo cell shapes in capillaries are generally not axisymmetric, but as yet there 
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have been few efforts at modelling asymmetric cell shapes. Secomb & Skalak (1982) 
used a two-dimensional model and predicted the occurrence of tank-treading (cf. 
Gaehtgens & Schmid-Schonbein 1982), and a reduced apparent viscosity for asym- 
metric cell shapes compared to corresponding symmetric shapes. It is not known 
whether non-axisymmetry produces a similar effect in a cylindrical capillary. 

The overall aim of the studies reported here has been to understand the rheology 
of blood in terms of the mechanical properties of individual red blood cells. 
Axisymmetric models provide useful insights into several aspects of single-file flow 
in narrow capillaries. However, much work is required to achieve similar progress 
in understanding non-symmetric and complex multi-file flow in larger microvessels. 
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